企业等级: | 商盟会员 |
经营模式: | 生产加工 |
所在地区: | 安徽 合肥 |
联系卖家: | 丁经理 先生 |
手机号码: | 17755335211 |
公司官网: | www.hfwyhb.com |
公司地址: | 合肥市蜀山区望江西路港汇广场B区商业A栋A-1315 |
反硝化除磷菌(DPB)的作用机制反硝化除磷菌(DenitrifyingPolyphosphateAccumulatingOrganisms,简称DPB)是一类在污水处理中扮演革命性角色的特殊微生物。它们的神奇之处在于,能够同步完成反硝化脱氮(去除)和过量吸磷除磷这两个关键过程,且是在缺氧(无分子氧但有)条件下进行的。其作用机制如下:1.厌氧释磷与碳源摄取:在厌氧(无分子氧也无)环境中,DPB分解体内储存的聚磷酸盐(Poly-P),释放出磷酸盐(PO?3?)并产生能量。同时,它们利用这部分能量摄取污水中的挥发性脂肪酸(VFAs)等易降解有机物,将其转化为胞内储存物聚羟基烷酸酯(PHA)。2.缺氧反硝化吸磷:这是DPB关键的作用阶段。当环境转变为缺氧(存在NO??或亚NO??作为电子受体,但无分子氧O?)状态时:*DPB分解之前储存的PHA,获得能量和碳架。*利用获得的能量,以/亚代替氧气作为电子受体,进行反硝化作用,将其逐步还原为氮气(N?)或一氧化二氮(N?O)释放到大气中,生物浦池反硝化,实现脱氮。*同时,利用分解PHA产生的能量,过量吸收环境中的磷酸盐(PO?3?),将其重新合成为聚磷酸盐(Poly-P)储存在体内,实现磷的去除。DPB技术的优势在于:*碳源利用:同一份碳源(VFAs)既驱动了反硝化脱氮,又驱动了吸磷除磷,显著减少了对额外碳源(如)的需求,降低了运行成本。*能耗降低:缺氧吸磷过程无需曝气(消耗大量电能),而传统生物除磷需要好氧曝气环境。这大幅降低了能耗。*污泥产量减少:DPB通常生长速率较慢,且其代谢过程更,因此产生的剩余污泥量相对较少。*简化工艺流程:可在单一缺氧池内同步完成脱氮除磷,简化了传统需要分别设置缺氧池(脱氮)和好氧池(除磷)的工艺流程,节省基建投资和占地。应用:基于DPB原理开发的污水处理工艺,如A2N(厌氧-缺氧-硝化)、Dephanox等,在市政和工业废水处理领域具有重要应用前景。它们为解决传统脱氮除磷工艺面临的碳源不足、能耗高、污泥量大等问题提供了、可持续的解决方案。总而言之,反硝化除磷菌通过其的“一碳两用”代谢途径,在缺氧条件下同步实现反硝化脱氮和过量吸磷除磷,是污水生物处理领域一项极具潜力的节能降耗关键技术。
反硝化除磷装置(DenitrifyingPhosphorusRemoval,简称DPR)是一种创新的污水处理技术,其作用是在单一反应器内,利用特定微生物(反硝化聚磷菌,DPB)同步地去除污水中的氮(主要以形式)和磷(磷酸盐)污染物。其主要作用和优势体现在:1.同步脱氮除磷:*传统生物脱氮除磷通常需要多个独立的好氧、缺氧、厌氧反应区段,分别进行硝化、反硝化和好氧吸磷/厌氧释磷过程,流程长且存在碳源竞争矛盾。*DPR装置的关键在于利用DPB菌。这类微生物在缺氧条件下(而非传统的好氧条件),能够利用(NO??)作为电子受体,同时完成:*反硝化(脱氮):将NO??还原为氮气(N?)逸出。*过量吸磷(除磷):在此过程中吸收并储存污水中的磷酸盐(PO?3?)。*这实现了在同一个缺氧反应器内,一个代谢过程同时去除两种主要污染物,大大提高了处理效率和空间利用率。2.显著节省碳源需求:*在传统工艺中,反硝化脱氮和聚磷菌的厌氧释磷都需要易生物降解的有机碳源(如COD)作为电子供体,两者存在激烈竞争,常导致碳源不足而影响脱氮或除磷效率,需要额外投加碳源(如)。*DPR工艺中,DPB菌利用同一种碳源(污水中的有机物)同时驱动反硝化和吸磷过程,“一碳两用”,极大地优化了碳源利用效率,显著降低甚至完全避免了对外加碳源的需求,降低了运行成本。3.降低能耗:*传统好氧除磷需要大量曝气提供氧气作为电子受体,曝气能耗是污水处理厂的主要能耗来源。*DPR工艺主要在缺氧条件下运行,对曝气(供氧)的需求大大降低。虽然前端通常仍需要好氧区进行硝化反应(将氨氮转化为),但整体系统的曝气能耗显著低于传统工艺。4.减少剩余污泥产量:*DPR工艺中微生物(DPB)在缺氧条件下同时完成吸磷和生长,其能量利用效率较高,理论上可以产生比传统工艺更少的剩余污泥量,降低了污泥处理处置的成本和环境影响。5.简化工艺流程与节省占地:*通过将脱氮和除磷两个过程整合在单一缺氧反应器内完成,可以简化污水处理流程,减少反应池的数量和容积,从而节省基建投资和占地面积。总结来说,反硝化除磷装置的作用是利用反硝化聚磷菌(DPB)在缺氧环境下的代谢能力,实现污水氮、磷污染物的同步去除。其优势在于显著节省了碳源消耗和曝气能耗,降低了运行成本,同时简化了工艺流程,是污水处理领域向更、更节能、更可持续方向发展的重要技术之一。
污水处理中的硝化反硝化工艺:脱氮的在城镇污水和工业废水处理领域,有效去除氮污染物(主要为氨氮)是防止水体富营养化的关键。硝化反硝化工艺正是利用特定微生物的协同作用,实现、经济生物脱氮的技术。工艺原理:两步走的氮转化该工艺包含两个生物化学阶段:1.硝化(好氧过程):在充足溶解氧(DO,通常>2mg/L)环境下,自养型硝化细菌(如亚硝化单胞菌、硝化)将污水中的氨氮(NH??/NH?)逐步氧化。*首先氧化为亚盐(NO??)*进而氧化为终产物盐(NO??)*此过程消耗大量氧气与碱度(需补充),产生氢离子使pH下降。2.反硝化(缺氧过程):在缺氧(DO极低,接近0mg/L,但存在盐)条件下,异养型反硝化细菌利用有机物(BOD)作为碳源和电子供体,将硝化产生的盐(NO??)或亚盐(NO??)逐步还原。*终产物为无害的氮气(N?),释放到大气中。*此过程消耗有机物,并产生一定的碱度,可部分补偿硝化消耗。工艺实现:空间或时间的分隔硝化(需氧)与反硝化(需缺氧)对环境要求截然不同,在工程实践中主要通过两种方式实现:*空间分隔(主流工艺):在曝气池(好氧区)后设置独立的缺氧池(反硝化区),如常见的A2/O(厌氧-缺氧-好氧)工艺、氧化沟工艺、SBR(序批式反应器)的不同阶段。混合液或部分出水会在不同区域间回流(如硝化液回流至缺氧池前端),以提供盐。*时间分隔:在同一个反应器内(如SBR的一个周期),通过程序控制曝气与搅拌,交替创造好氧(硝化)与缺氧(反硝化)条件。关键控制参数成功运行该工艺需严格调控:*溶解氧(DO):好氧区维持足够DO(>2mg/L)保证硝化;缺氧区严格控制DO(*碳氮比(C/N):足够的易降解有机物(BOD)是反硝化菌的“食物”和电子供体。进水BOD?/TKN(总凯氏氮)比值通常需>4,不足时常需外加碳源(如、钠)。*污泥龄(SRT):硝化菌生长缓慢,需足够长的SRT(通常>10-15天,低温时更长)保证其生长繁殖。*pH与碱度:硝化消耗碱度,需监控pH(7.0-8.0)并补充碱度(如投加石灰、碳酸钠)防止pH骤降抑制硝化菌。*温度:硝化反硝化速率受温度影响显著,低温(硝化反硝化工艺因其成熟可靠、处理效果好、运行成本相对可控,成为污水处理厂去除氮污染物的应用技术,为保护水环境健康发挥着不可或缺的作用。
生物浦池反硝化-合肥沃雨|免费咨询(图)由合肥沃雨环保科技有限公司提供。合肥沃雨环保科技有限公司实力不俗,信誉可靠,在安徽 合肥 的污水处理设备等行业积累了大批忠诚的客户。合肥沃雨带着精益求精的工作态度和不断的完善创新理念和您携手步入辉煌,共创美好未来!合肥沃雨环保科技有限公司 电话:0551-64666058 传真:0551-64666058 联系人:丁经理 17755335211
地址:合肥市蜀山区望江西路港汇广场B区商业A栋A-1315 主营产品:环保设备
Copyright © 2025 版权所有: 天助网 增值电信业务经营许可证:粤B2-20191121
免责声明:以上所展示的信息由企业自行提供,内容的真实性、准确性和合法性由发布企业负责。天助网对此不承担任何保证责任。
您好,欢迎莅临合肥沃雨,欢迎咨询...